

RABAT CONFERENCE ON COASTAL RISKS

(APRIL 23-24, 2019)

INTEGRATED MANAGEMENT OF A COASTAL LAGOON (RIA FORMOSA) USING A QUANTITATIVE DPSIR APPROACH

Luís Nunes Universidade do Algarve Faro, Portugal

DPSIR: what for?

Selection of sustainability indicators for planning: combining stakeholders participation and data reduction techniques

10.1016/j.jclepro.2015.01.005

Figure 4 – Clusters resulting of stakeholders' scoring (crosses represent decision makers and planners, circles represent academics).

In the meanwhile the economic system is deciding for all...

The country sustainability score is based on 17 environmental, social and governance indicators, which receive a weight of 15%, 25% and 60% of the total score, respectively. The score ranges from 1 to 10 and should be interpreted as a grade, with the highest grade being 10 and the lowest 1. The purpose of the score is to compare countries on the basis of ESG indicators that we consider to be relevant for investors.

Causal framework for describing the interactions between society and the environment

The Driver-Pressure-State-Impact-Response (DPSIR) conceptual framework brings together natural sciences, social sciences and economics in one framework for adaptive management.

OBJECTIVES

The modeler should select relevant and measurable indicators

Driver	Pressure	State	Impact	Policy response (*)
Urban and tourism development	Increase in resident and seasonal population: wastewater production freshwater consumption wetland reclamation soil impermeabilisation	Eutrophication Development of bacteria of sanitary concern Contamination by POP	Altered freshwater/saline water equilibrium Reduced water quality Eutrophication Anoxic crises	Increase treatment level for domestic wastewater Increase wastewater reuse Develop buffer zones

80

How to establish the causal relationships?

P = f(df)S = g(p) $I = h(\underline{s})$

Qualitative Identification of relationships without quantifying

Quantitative Second step where quantitative relationships are established

Quantitative (Pressures)

P = f(d,r) Pressure indicators are converted to the same unit of measurement

P = GHG(d,r); d: pressures due to consumption and generation; r: responses

$$GHG = f\left(g_w(C_w), g_{ww}(G_{ww}), g_s(G_s), g_p(C_p), g_g(C_g), g_{ws}(G_{ws}), g_t(G_t), g_o(C_o); EF_e, EF_g, EF_v\right)$$

C refers to consumption, G to generation, and EF to emission factor.

Subscript **w** refers to water supply, **ww** to wastewater, **e** to electricity, **g** to gas, **ws** to waste, **t** to transport and **o** to others.

Quantitative (Pressures)

$$\begin{aligned} \mathsf{GHG}_{\mathsf{w}}\left(\frac{\mathsf{kgCO}_{2\,\mathsf{eq}}}{\mathsf{year}\times\mathsf{res}}\right) &= g_{\mathsf{w}}(C_{\mathsf{w}}) = \mathsf{EC}_{\mathsf{w}}\left(\frac{\mathsf{kWh}}{\mathsf{m}^{3}}\right) \times C_{\mathsf{w}}\left(\frac{\mathsf{m}^{3}}{\mathsf{year}\times\mathsf{res}}\right) \times \mathsf{EF}_{\mathsf{e}}\left(\frac{\mathsf{kgCO}_{2\,\mathsf{eq}}}{\mathsf{kWh}}\right) \\ \mathsf{GHG}_{\mathsf{ww}}\left(\frac{\mathsf{kgCO}_{2\,\mathsf{eq}}}{\mathsf{year}\times\mathsf{res}}\right) &= g_{\mathsf{ww}}(G_{\mathsf{ww}}) = \mathsf{EC}_{\mathsf{ww}}\left(\frac{\mathsf{kWh}}{\mathsf{m}^{3}}\right) \times G_{\mathsf{ww}}\left(\frac{\mathsf{m}^{3}}{\mathsf{year}\times\mathsf{res}}\right) \times \mathsf{EF}_{\mathsf{e}}\left(\frac{\mathsf{kgCO}_{2\,\mathsf{eq}}}{\mathsf{kWh}}\right) \\ \mathsf{GHG}_{\mathsf{e}}\left(\frac{\mathsf{kgCO}_{2\,\mathsf{eq}}}{\mathsf{year}\times\mathsf{res}}\right) &= g_{\mathsf{e}}(C_{\mathsf{e}}) = C_{\mathsf{e}}\left(\frac{\mathsf{kWh}}{\mathsf{year}\times\mathsf{res}}\right) \times \mathsf{EF}_{\mathsf{e}}\left(\frac{\mathsf{kgCO}_{2\,\mathsf{eq}}}{\mathsf{kWh}}\right) \\ \mathsf{GHG}_{\mathsf{g}}\left(\frac{\mathsf{kgCO}_{2\,\mathsf{eq}}}{\mathsf{year}\times\mathsf{res}}\right) &= g_{\mathsf{g}}\left(C_{\mathsf{g}}\right) = C_{\mathsf{g}}\left(\frac{\mathsf{kWh}}{\mathsf{year}\times\mathsf{res}}\right) \times \mathsf{EF}_{\mathsf{g}}\left(\frac{\mathsf{kgCO}_{2\,\mathsf{eq}}}{\mathsf{kWh}}\right) \\ \mathsf{GHG}_{\mathsf{w}}\left(\frac{\mathsf{kgCO}_{2\,\mathsf{eq}}}{\mathsf{year}\times\mathsf{res}}\right) &= g_{\mathsf{w}}(G_{\mathsf{ws}}) = G_{\mathsf{ws}}\left(\frac{t}{\mathsf{year}\times\mathsf{res}}\right) \times \mathsf{EF}_{\mathsf{g}}\left(\frac{\mathsf{kgCO}_{2\,\mathsf{eq}}}{\mathsf{kWh}}\right) \\ \mathsf{GHG}_{\mathsf{f}}\left(\frac{\mathsf{kgCO}_{2\,\mathsf{eq}}}{\mathsf{year}\times\mathsf{res}}\right) &= g_{\mathsf{t}}(G_{\mathsf{t}}) = G_{\mathsf{t}}\left(\frac{\mathsf{km}}{\mathsf{year}\times\mathsf{res}}\right) \times \mathsf{EF}_{\mathsf{v}}\left(\frac{\mathsf{kgCO}_{2\,\mathsf{eq}}}{\mathsf{kWh}}\right) \\ \mathsf{GHG}_{\mathsf{t}}\left(\frac{\mathsf{kgCO}_{2\,\mathsf{eq}}}{\mathsf{year}\times\mathsf{res}}\right) &= g_{\mathsf{t}}(G_{\mathsf{t}}) = G_{\mathsf{t}}\left(\frac{\mathsf{km}}{\mathsf{year}\times\mathsf{res}}\right) \times \mathsf{EF}_{\mathsf{v}}\left(\frac{\mathsf{kgCO}_{2\,\mathsf{eq}}}{\mathsf{kWh}}\right) \\ \mathsf{GHG}_{\mathsf{t}}\left(\frac{\mathsf{kgCO}_{2\,\mathsf{eq}}}{\mathsf{year}\times\mathsf{res}}\right) &= g_{\mathsf{t}}(G_{\mathsf{t}}) = G_{\mathsf{t}}\left(\frac{\mathsf{km}}{\mathsf{year}\times\mathsf{res}}\right) \times \mathsf{EF}_{\mathsf{v}}\left(\frac{\mathsf{kgCO}_{2\,\mathsf{eq}}}{\mathsf{kWh}}\right) \\ \mathsf{GHG}_{\mathsf{t}}\left(\frac{\mathsf{kgCO}_{2\,\mathsf{eq}}}{\mathsf{year}\times\mathsf{res}}\right) &= g_{\mathsf{t}}(G_{\mathsf{t}}) = G_{\mathsf{t}}\left(\frac{\mathsf{km}}{\mathsf{year}\times\mathsf{res}}\right) \times \mathsf{EF}_{\mathsf{v}}\left(\frac{\mathsf{kgCO}_{2\,\mathsf{eq}}}{\mathsf{k}^{\mathsf{t}}\right) \\ \mathsf{KF}_{\mathsf{t}}\left(\frac{\mathsf{kgCO}_{2\,\mathsf{eq}}}{\mathsf{k}^{\mathsf{t}^{\mathsf{t}}}\right) \\ \mathsf{KF}_{\mathsf{t}}\left(\frac{\mathsf{kgCO}_{2\,\mathsf{eq}}}{\mathsf{k}^{\mathsf{t}^{\mathsf{t}^{\mathsf{t}}}\right) = g_{\mathsf{t}}(G_{\mathsf{t}}) = G_{\mathsf{t}}\left(\frac{\mathsf{km}}{\mathsf{k}^{\mathsf{t}^$$

ECw and ECww are the energetic costs of supplying water and managing wastewater, respectively; **Cw, Ce and Cg** are the water, electricity and gas consumptions;

Gww and Gws are the wastewater and waste generation, and **Gt** is the accumulated length of journeys. **Efe , EFg, Efws and Efv** represent the emission factors for electricity, gas, waste management and vehicles

Quantitative (Impacts)

Impacts

I = h(s,r)

1. Computed from GHG

$$I(\in) = GHG (ton CO_{2e}/res) \cdot res \cdot K_1 (\in/ton CO_{2e})$$
(1)

(2)

2. Computed using "Willingness to pay" values

I (€) = Var (unit) · K₂ (€/unit)

 K_1 = CO₂ European Emission Allowances (ref period 2016): 7.12 €/ ton CO_{2e} K_2 = Value of ecosystem services, scenic values, perceived health risks

Quantitative (Impacts)

Stochastic model

Crisp values are replaced by statistical distributions

Include Uncertainty

Study uncertainty propagation

Quantitative (Impacts)

Finaly:

$qDPSIR = \Sigma Positive impacts - \Sigma Negative impacts$ (3)

Positive impacts include economic revenues and preservation values.

Negative impacts include all externalities.

COASTAL LAGOON (RIA FORMOSA) SOUTH PORTUGAL

System of barrier islands that communicates with the sea through six inlets.

Case-study

Main indicators: **PRESSURES**

Population (res) **U**rban area (ha) Ww prod (m³/res) Waste prod (m³/res) Water cons (m³/res) **E**lectricity cons (kWh/res) Nb vehicles (u/res) Railway users (res) Food cons (ton/res) Prod BaP WWTP (g/y/res)

Tourism

Nb tourists (res) Area nature park (ha) % hotel occup Ww prod Waste prod Water cons **E**lectricity cons Nb. vehicles Nb touristic boats Nb service hours public boat fleet Food cons

Airport & Port Nb passengers Nb Ship opperat. Ship type Hotelling time (d)

Main indicators: **STATE**

Urban area	Tourism	بن Aquaculture	Airport & Port
Estimated Lifetime Risk (ELTR) for BaP (1: million)	Willingness to pay for preservation (€/res/d): 1.71€/res/visit Ecosystem services (€/ha): 29 000 €/ha/year	None	None

Main indicators: IMPACTS

Study of management scenario for the future

How far could tourism be increased? Blind modelling...

Max (Σ **Positive impacts** – Σ **Negative impacts**)

Subjet to some restrictions

1. Decrease Ww volume	100%
2. Increase Nb tourists	17 times
3. Increase resident population	8 times
4. Increase urban area to	12 617 ha (hope we never get this far)

Uncertainty propagation: contribution of WWTP

Figure 4 – Clusters resulting of stakeholders' scoring (crosses represent decision makers and planners, circles represent academics).

Thank you!!